- 产业信息门户

科学家利用迁移学习建立计算大模型预测基因调控研究

基因网络绘制需要大量转录组数据用于建立基因之间的联系,这也阻碍了一些数据有限场景(如罕见病)等研究。最近,利用迁移学习的机器学习技术在自然语言和计算机视觉等领域带来了变革性进展,其通过在大规模通用数据集上进行大模型预训练,而后迁移到数据量有限的特定任务进行微调。美国博德研究所等研究团队提出了一个深度学习模型Geneformer可实现特定生物学任务与背景中的预测。该研究成果于近日发表在《Nature》杂志上,题为:Transfer learning enables predictions in network biology。


研究人员开发的深度学习模型Geneformer,在大约3000万个单细胞转录组的大规模数据集上进行了预训练,以便在网络生物学有限数据的情况下进行特异性预测。在预训练期间,Geneformer获得了对网络动态的基本理解,以完全自我监督的方式在模型的注意力权重中编码网络层次。研究人员利用Geneformer基于下游有限数据进行了预测任务,包括“疾病候选靶点预测”“解释拷贝数变异”“关键基因网络调控因子”“基因网络层次编码”“染色质动力学预测”等,并通过实验支持了其预测的结果。


综上,Geneformer代表了一种预训练的深度学习模型,可以对其进行微调,以实现广泛的下游应用,加速发现网络调节关键环节和候选治疗目标。


注:此研究成果摘自《Nature》杂志,文章内容不代表本网站观点和立场,仅供参考。


知前沿,问智研。 是中国一流产业咨询机构,十数年持续深耕产业研究领域,提供深度产业 、商业计划书、可行性 及定制服务等一站式产业咨询服务。专业的角度、品质化的服务、敏锐的市场洞察力,专注于提供完善的产业解决方案,为您的投资决策赋能。


版权提示: 倡导尊重与保护知识产权,对有明确来源的内容注明出处。如发现本站文章存在版权、稿酬或其它问题,烦请联系我们,我们将及时与您沟通处理。联系方式:gaojian@chyxx.com、010-60343812。

在线咨询
微信客服
微信扫码咨询客服
电话客服

咨询热线

400-700-9383
010-60343812
返回顶部
在线咨询
开云app存款
商业计划书
项目可研
定制服务
返回顶部
Baidu
map